Roles in NIEM 0.2

Georgia Tech Research Institute
Feburary 17, 2006

Contents
1 Requirements 1
2 Description of Technique 1
3 Options 2
4 Syntax Examples 3
4.1 Instance L 3
4.2 Type Definition Lo 3
5 Advantages 4
6 Disadvantages 4

1 Requirements

Requirement 1 Represent roles, either with an activity, or without an activ-
ity

Requirement 2 Represent multiple roles for the same person (or other base
object) at the same time

Requirement 3 Identify the type of the base object of the role (e.g. this is a
role of a person)

2 Description of Technique

Make the distinction between something that is a specialization of an object,
and something that is a role of an object. A role is an independently valid
function of an object. A role may have a life cycle independent of any specific
activity. Continue to use type inheritance for specialized objects. Adopt the
concept of a role as an object that represents a specific function of another
object.

Roles in NIEM 0.2 2

Define the following terms:

Base object: Some object defined in the data model

Role object: An object that represents a specific function of the base object
Base object type: The XML Schema type of the base object

Role object type: The XML Schema type of the role object

RoleOf: A property of a role object. The RoleOf property specifies the base
object, of which the role object is a function.

Refactor the data model to account for roles. This refactoring will consist
of the following steps:

e For each type in the data model, determine if it defines a role object.

e If it defines a role object, then:

— If it is derived (i.e. using xsd:extension) from its base object type,
then:
* Remove the derivation.
* Replace it with a derivation from the super type.
x Add to it an element RoleOfReference, referring to its base
object type.

— If it is derived from an ancestor of its base object type, then:

* Refactor its parent type.

This refactoring will occur along with other proposed refactoring.

3 Options

1. The cardinality (minOccurs, maxOccurs) of the RoleOf element in a role
object could be defined several ways. Cardinality of (0, unbounded) main-
tains consistency with the GJXDM 3.0, and is the recommended value.

minOccurs="0": Allows, for example, an enforcement official to be de-
scribed without referencing the person of which it is a role.

minOccurs="1": Requires the base object to appear. For example, an
enforcement official must specify a person of which it is a role.

maxOccurs="unbounded": Allows multiple base objects to appear. For
example, you could specify that an officer may have been person A
or person B, with varying degrees of certainty.

Roles in NIEM 0.2 3

maxOccurs="1": Requires that, at most, one base object may appear for
a role object. This would require that an enforcement official may be
a role of no more than one person, but does not help accommodate
uncertainty.

Use of (minOccurs="0", maxOccurs="unbounded") would keep the role
property in line with GJXDM 3.0 definitions: optional and over-inclusive.

It would allow special cases (e.g. the base object is unknown, or there are
several possible base objects). Such values may be subset to (minOccurs="1",
maxOccurs="1"), or any other desired cardinality.

2. Roles may be built from common parent types.

For example, there are numerous objects that are roles of a person. We
may define a type that is a generic role of a person, and derive specific
roles from that type. This may help how some users think about roles.
We may decide that roles of a person are a general kind of thing, and that
all roles of a person may have common characteristics.

4 Syntax Examples

4.1 Instance

<Person s:id="P1">
<PersonName>
<PersonFullName>Fred Smith</PersonFullName>
<PersonFullName>
</Person>

<EnforcementOfficial>
<RoleOfPersonReference s:ref="P1"/>
<EnforcementOfficialBadgeID>
<ID>101101</ID>
</EnforcementOfficialBadgeID>
</EnforcementOfficial>

Use of the element RoleOfPeronsReference satisfies Requirement 3 , in
that it indicates the type of the base object (in this case, a person of type
PersonType). The type is not enforced by XML Schema validation. It is in-
dicated, and could be enforced by XSLT scripts, but is not enforced by XML
Schema validation.

4.2 Type Definition

<complexType name="EnforcementOfficialType">
<complexContent>
<extension base="this:SuperType">

Roles in NIEM 0.2 4

<sequence>
<element ref="this:RoleOfePersonReference" minOccurs="0"
maxOccurs="unbounded"/>

. Additional elements defined for enforcement officials ...

</sequence>

</extension>
</complexContent>

</complexType>

5

Advantages

. Enables accurate modeling of roles of a thing versus specialized versions

of that thing

. Enables a thing with multiple roles to be well represented.

Previously, such a case would have required one of two methods:

a) Duplication of data and value-based resolution of duplicate objects

Duplicati f dat d value-based luti f duplicate object
(i.e. the enforcement official and the victim have the same name, and
so must be the same person), or

(b) Use of the Relationship object named SameAs, with subject and
object pointing to the replicated objects.

Disadvantages

. References can’t be validated via XML Schema validation. Validation

must be conducted via other mechanisms (e.g. in code, or with XSLT).

. Increases the number of objects: There is a separate object for a person

and each role of that person.

Given n roles for a person, there would be n+1 objects, while the previous
method would only require n objects.

. Requires an ID-dereferencing step to determine properties of a person.

For example, trying to determine the name of an enforcement official re-
quires first finding the person object, then using the name of that person.

